Hazard Analysis — Construction dust
Problem:
Workers that operate cranes and lifts may face hazards from construction dust.Risk Description:
Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Chronic bronchitis is present when someone has a regular cough with phlegm for at least 3 months per year for two years. Emphysema is present when there is destruction of the walls of the airspaces of the lung. The destruction of airspaces means there is less lung surface; loss of lung surface reduced the ability of the lung to transfer oxygen into the blood stream.
Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Chronic bronchitis is present when someone has a regular cough with phlegm for at least 3 months per year for two years. Emphysema is present when there is destruction of the walls of the airspaces of the lung. The destruction of airspaces means there is less lung surface; loss of lung surface reduces the ability of the lung to transfer oxygen into the blood stream.
In 1999 COPD ranked as the fourth leading cause of death with over 124,000 deaths, and was a primary or contributing cause of death for an estimated 8.5% of the U.S. population. An estimated 16 million individuals in the U.S. had a diagnosis of COPD in 1994. Worldwide, COPD is projected to be the third leading cause of death by 2020. Eighty to ninety percent of COPD is caused, at least in part, by tobacco smoking, but exposure to dust is an important risk factor as well. The American Thoracic Society concluded that 15% of COPD was caused by occupational exposures, and that occupational dust and fume exposures can cause clinical bronchitis and loss of lung function in both smokers and nonsmokers. Dust may contain specific contaminants such as crystalline silica or hexavalent Chromium.
Smoking is the primary cause of COPD, but smoking alone does not explain all COPD, as only 15-20% of smokers developed COPD and 10% of deaths from COPD occur in persons who never smoked. Occupational exposures to dusts and chemicals (vapors, irritants, fumes) also cause COPD; the specific exposures in construction linked to COPD are wood dusts, cadmium, silica, welding fumes, cement dust, asbestos, and possibly isocyanates. For someone with heavy dust exposure over many years, the dust contributes as much to COPD as smoking does. Across all occupations, about 15% of COPD is caused by occupational exposures.
One study, “A case-control study of airways obstruction among construction workers”, examined occupational exposures to vapors, gases, dusts and fumes (VGDF) among older construction workers between 1997 and 2013, comparing 834 workers with COPD and 1,243 controls. Approximately 18% (95% CI=2-24%) of COPD in this population can be attributed to workplace exposures associated with construction tasks. After adjusting for smoking habits in this population, the study also revealed among construction workers who never smoked, 32% (95% CI=6-42%) of COPD was attributable to the workplace.
Airflow in nonsmokers without respiratory disease declines by 25 to 30 ml per year beginning at about age 35. The rate of decline of airflow is faster for smokers than for nonsmokers, and faster for those exposed to lots of dust. Individuals with COPD have more frequent chest illnesses, which also decrease lung function for several months.
When wood dust comes into contact with the skin, its non-allergic effect is usually irritation, which can lead to rashes or irritant dermatitis that tends to appear on the scalp, eyelids, neck, forearms, the backs of hands and genitals. These symptoms usually take approximately 15 days to develop and will only persist as long as the affected skin site remains in contact with the source of the wood dust.
Wood dust can also cause allergic contact dermatitis which is another form of dermatitis caused by sensitizers of certain wood dust species. This type of allergic reaction can produce the same effects as the non-allergic reaction to wood dust. The difference is that once the body is sensitized, it will set up an allergic reaction that can enable the skin to react more severely to even a small amount of that particular wood dust (or related wood species) in subsequent episodes of exposures.
Exposures to wood dust can affect the respiratory tract, such as the nose. Inhalation of wood dust can cause runny nose (rhinitis), sneezing, stuffed nose and nose bleeds. These symptoms usually arise from irritation, but can also be a consequence of allergic sensitation (i.e. rhinitis). Several studies have suggested that certain wood dusts, especially oak and beech (confirmed human carcinogens), but perhaps also birch, mahogany, teak, walnut (suspected human carcinogens) may cause nasal cancer, although rare.
Inhalation of wood dust can lead to obstructive patterns of respiratory changes, which can limit breathing flow rates and impair lung function. One lung condition attributable to wood dust exposure (especially Western Red Cedar) is occupational asthma, which includes wheezing, coughing, tightness across the chest and shortness of breath. Some wood dust can also cause asthma as an allergic reaction once the body is sensitized to that wood species.
Wood dust that comes into contact with the eyes can cause watering, soreness and inflammation of the eyes (conjunctivitis).
Assessment Info:
You must determine whether exposures at your jobs exceed allowable limits for overall dust and specific dusts.
Silica is an important component of many construction dust exposures., and the PEL for silica exposure in construction is much lower than the PEL for non-silica containing dust, so it is essential to determine the silica content of any dust exposures. OSHA has an e-tools site for silica that walks you through the process of assessment of silica exposure.
Exposure assessment must be done by a qualified person. You may be able to to obtain assistance in measuring exposures from your State OSHA consultation service or from your contractor association.
Regulations & Standards:
OSHA standard 1926.55, titled Gases, vapors, fumes, dusts, and mists, in safety and health regulations for construction must be in place. Exposure of employees to inhalation, ingestion, skin absorption, or contact with any material or substance at a concentration above those specified in the "Threshold Limit Values of Airborne Contaminants for 1970" of the American Conference of Governmental Industrial Hygienists, shall be avoided.
American Conference of Governmental Industrial Hygienists (ACGIH) recommends a time weighted average exposures of less than 10 mg/m3 for total dust (compared to the OSHA PEL of 15mg/m3). For respirable dust the ACGIH recommends a limit of 3 mg/m3 compared to an OSHA PEL for general industry of 5 mg/m3.
Cabs on new equipment or retrofit kits can be designed to conform with ISO 10263 standards which provides for positive cab pressure of at least 0.2 inches of water (50 Pascals), a minimum of 25 CFM of filtered intake air into the cab, and typically 200 to 300 CFM filtered recirculating air within the cab. This requires that cabs be tightly sealed and have both filtered recirculating air and air conditioning (typically 20,000 BTU). See the MSHA report on “Effectiveness of Cabs for Dust and Silica Control on mobile Mining Equipment” Garcia,J.J. et.al. MSHA.
Federal OSHA Standards are enforced by the U.S. Department of Labor in 26 states. There are currently 22 states and jurisdictions operating complete State plans (covering both the private sector and state and local government employees) and 5 - Connecticut, Illinois, New Jersey, New York and the Virgin Islands - which cover public employees only. If you are working in one of those states or jurisdictions you should ensure that you are complying with their requirements.
Other Considerations:
Controlling worker exposure to dust also results in reductions in housekeeping or cleanup, reduced environmental contamination, and reduction in nuisance dust exposurers to the general public. Many cities and local governments have nuisance ordinances that may require dust controls.